Isolation Of Acinetobacter Species From Pus Samples In A Tertiary Care Hospital

Dr. Rama Lakshmi Koripella¹, Dr.Perala Bala Murali Krishna², Dr.B.N.V.D.Bhavani³, Dr. Sulakshana Sony Cheemala⁴.

Department of Microbiology, Andhra Medical College, Visakhapatnam, Andhra Pradesh, India

Abstract

Introduction: Acinetobacter species are Gram Negative coccobacilli causing various nosocomial infections. The spread of multidrug resistant Acinetobacter strains among hospitalized patients became an increasing cause of concern.

Aims:

1. To isolate Acinetobacter species from pus samples received from various wards and ICU's

2. To study their antibiogram pattern.

Materials & Methods: A total of 748 pus samples received at AMC Microbiology laboratory during a period of 2 months in 2014 were included. The samples were processed for Grams stain and culture by inoculating on Blood agar & MacConkey agar and incubated overnight at 37°C. Acinetobacter species were isolated and identified by biochemical tests. The antibiotic susceptibility testing was done by Kirby-Bauer disk diffusion method and zones were interpreted as per CLSI guidelines. ESBL production was tested by double disk diffusion method using Ceftazidime and Ceftazidime clavulanate discs.

Results: Out of 748 samples 51.4% were males and 48.6% were females. Middle aged and elderly age groups were commonly affected in our study. Out of 748 samples 58(7.8%) were culture positive for Acinetobacter species. Among 58 isolates 32(55.2%) were Acinetobacter baumannii, 24(41.3%)A.lwoffii, 2(3.4%) were A.heamolyticus. Most of the isolates were sensitive to Tigecycline(91.3%) followed by Imipenem(84.4%),

Piperacillin tazobactum(82.8%) and levofloxacin(81%) and resistant to Cefotaxime, Ceftazidime, Gentamycin and Amikacin. Among 58 isolates 45(77.6%) were ESBL producers.

Conclusion:

- 1. Acinetobacter infections became a common drug resistant threat in hospital acquired infections.
- 2. A combined effort of continuous surveillance and infection control protocols have to be implemented to control the increasing incidence of highly resistant Acinetobater infections.

Keywords: Acinetobacter, Gram negative coccobacilli, Nosocomial infections, ESBL production, Tigecycline

I. Introduction

Acinetobacter species are Gram Negative coccobacilli causing various nosocomial infections. According to most recent scientific literatures, Acinetobacter species are the second most common non-fermentating Gram negative pathogens isolated from clinical samples after Pseudomonas *aeruginosa*¹. The spread of multidrug resistance Acinetobacter strains among hospitalized patients became an increasing cause of concern². Despite their low pathogenic potential Acinetobacter Species survive in the hospital environment for a long time and there by getting an opportunity to cause hospital acquired infections³.

II. Aims

1. To isolate Acinetobacter species from pus samples

2. To study their antibiogram pattern of the Isolated Organisms

III. Materials & Methodology

A total of 748 pus samples received from various wards & ICUs at AMC microbiology laboratory during the period of 2 months in 2014 were included .Isolation, identification and antibiogram of Acinetobacter sps were included in the study. Processing of other bacterial isolates were excluded. The samples were processed for Gram stain (Fig 1) & culture was done by inoculating on blood agar (Fig 4) & MacConkey agar(Fig 2 & 3) and incubated over night at 37 °C. Acinetobacter species were isolated and identified by Biochemical tests (Fig 5,6 & 7). The antibiotic susceptibility testing was done by Kirby-Bauer disk diffusion method (Fig 8) & zones were interpreted as per CLSI guidelines. ESBL production was tested by double disk diffusion method using Ceftazidime & Ceftazidime clavulnate discs⁴.

IV. Results

Out of 748 samples, 51.4% were males and 48.6% were female. Middle age and elderly age group were commonly affected in our study. Out of 748 samples 58 (7.8%) were culture positive for Acinetobacter Species. Among 58 isolates 32 isolates (55.2%) were A. bowmani 24 isolates (41.3%) were A. lowffii. 2 isolates (3.4%) were A. hemolyticus.

Most of the isolates were sensitive to Tigicycline (91.3%) + Imipenem (84.4%) Piperacilline + Tazobactum (82.8%), Levofloxacin (81%) and resistant to Cefotaxime, Ceftazidime, Gentamicin and Amikacin. Among 58 isolates 45 (77.6%) were ESBL producers.

Age	Male (51.4%)	Female (48.6%)	
0-10 years	20	17	
11-20 years	38	50	
21-30 years	55	96	
31-40 years	68	72	
41-50 years	64	54	
51-60 years	73	29	
>60 years	67	45	
Total	385	363	

 TABLE 1 : Age and Gender wise distribution n= 748
 Page 248

TABLE 2	: Isolation	of species
---------	-------------	------------

S.NO	Species	n=58(7.8%)
1	Acinetobacter bownani	32(55.2%)
2	Acinetobacter lwoffii	24(41.3%)
3	Acinetobacter hemolyticus	2(3.4%)

TABLE 3: Antibiotic susceptibility testing of Acinetobacter spp. (n = 58)

S.No	Antibiotic	Sensitivity patterns in percentage Sensitive		
		Number	Percentage	
1	Tigecycline	53	91.3%	
2	Imipenem	49	84.4%	
3	Piperacillin-Tazobactam	48	82.8%	
4	Levofloxacin	47	81%	
5	Amikacin	26	44.8%	
6	Gentamicin	23	39.7%	
7	Cefotaxime	23	39.7%	
8	Ceftazidime	20	34.5%	

V. Discussion

Acinetobacter Species is widely distributed and has tremendous colonizing potential hence it became very difficult to explain its significant role in the ICU⁵. Acinetobacter baumanni is now recognized as the species of great clinical importance⁶. In the present study 51.4 % were males and 48.6% were females which correlates with Smeeta Huidrom et al⁷ (66.1% & 33.9%) and Bhattacharya et al^{7.8} (1.46 & 1) Middle and elderly age group were more affected in our study which correlates with Smeeta Huidrom et al⁷ where as Bhattacharya et al⁸ reported the mean age 27 years. In the present study out of 748 samples 58 (7.8%) were culture positive for Acinetobacter Species from the samples received from various areas of the hospital. Smeeta Huidrom et al⁷ reported 12.6% and Patwardhan RB et al⁹ reported 13.2% from ICU samples. Prevalence rates of 14% and 9.6% among hospital isolates were observed by Mostofi et al¹⁰ and Joshi et al¹¹. Lower rates were reported by Rit et al¹² (4.5%) and Dash et al¹³ (3%).

Acinetobacter baumanni was isolated in 55.2%. A. lowffii in 41.3% and A. hemolyticus in 3.4% in the present study which correlates with Bhattacharya et al⁸ who reported 54%, 44% and 2% in their study and Poonam Sharma et al¹⁴ reported 41.5% of A.baumanni isolates from exudates and abscesses whereas Sengupta et al¹⁵ reported a lower isolation rates of 11.5% of A.baumanni from wounds.

Most of the isolates were sensitive to Tigecycline, Imipenem, Piperacilline Tazobactum and Levofloxacin. Multi-drug resistance (MDR)ie., resistance to Cefotaxime, Ceftazidime, Amikacin and Ciprofloxacin is an emerging problem with Acinetobacter species^{16,17,18}.ESBL producers (77.6%) in the present study correlates with Bhattacharya et al⁸ and Kansal R etal¹⁹ (75%) where as Sinha et al²⁰ reported low prevalence of 28%.

VI. Conclusions

- 1. Acinetobacter infections become a common threat in Hospital Acquired Infections.
- 2. Despite the increasing frequency of multi resistant Acinetobacter infection, many clinicians and microbiologists still lack appreciation of the importance of these organisms in the hospitals.
- 3. A combined effort of surveillance and infection control protocols have to be implemented to control the increasing incidence of highly resistance Acinetobacter infections.

References

- Gautam V, Singhal L, Ray P. Burkholoderia cepacia complex: Beyond Pseudomonas and Acinetobacter. Ind J Med Microbiol 2011; 29: 4-12.
- [2]. Dijkshoorn L, Nemec A, Seifert H. An increasing threat in hospitals: multi-drig resistant Acinetobacter baumannii. Nat Rev Microbiol 2007; 5: 939-951.
- [3]. K Prashanth, S Badrinath. Nosocomial infections due to Acinetobacter species: Clinical findings, risk and prognostic factors. Indian J Medical Microbiol 2006; 24(1):39-44.
- [4]. Bradford PA. Extended spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin Microbiol Rev 2001; 14: 933-951.
- [5]. Pierre Edouard Fournier, Herve Richet. The Epidemiology and Control of Ainetobacter Baumanniiin Health Care Facilities. Clin Infect Dis 2006; 42:692-9.
- [6]. Prashant K, Badrinath S. Simplified phenotypic tests for identification of Acinetobacter spp. and their antimicrobial susceptibility status. J Med Microbiol 2000; 49:773-778.
- [7]. Dr. Smeeta Huidrom, Dr. Girish. N, Dr. Rajendran .Isolation and study of Antimicrobial susceptibility and resistance patterns of Acinetobacter spp. from Intensive Care Units of a tertiary care hospital in Bengaluru. ISSN 2320-5407 International Journal of Advanced Research (2015), Volume 3, Issue 8, 1121 – 1125.
- [8]. Bhattacharyya S, Bhattacharyya I, Rit K, Mukhopadhyay PK, Dey JB, Ganguly U, Ray R. Antibiogram of Acinetobacter spp. isolated from various clinical specimensin a tertiary care hospital in West Bengal, India. Biomedical Research 2013; 24 (1): 43-46 ISSN 0970-938X.
- [9]. R.B. Patwardhan, P.K. Dhakephalkar, K.B. Niphadkar, B.A. Chopade. A study on nosocomial pathogens in ICU with special reference to multiresistant Acinetobacter baumannii harbouring multiple plasmids. Indian J Med Res 128, August 2008,178-87.
- [10]. Mostofi S, Mirnejad R, Masjedian F. Multi-drug resistance in Acinetobacter baumannii strains isolated from clinical specimens from three hospitals in Tehran-Iran. Afr J Microbiol Res 2011;5:3579-82.
- [11]. Joshi SG, Litake GM, Satpute MG, Telang NV, Ghole VS, Niphadkar KB. Clinical and demographic features of infection caused by Acinetobacter species. Indian J Med Sci 2006;60:351-60.
- [12]. Rit K, Saha R. Multidrug-resistant Acinetobacter infection and their susceptibility patterns in a tertiary care hospital. Niger Med J 2012;53:126-8.
- [13]. Dash M, Padhi S, Pattnaik S, Mohanty I, Misra P. Frequency, risk factors, and antibiogram of Acinetobacter species isolated from various clinical samples in a tertiary care hospital in Odisha, India. Avicenna J Med 2013;3:97-102.
- [14]. Poonam sharma1, yousuf ul bashir 1, sarjiwan Kaur 2, parmeet kaur 1, aruna aggarwal emerging antimicrobial resistance and clinical relevance Of acinetobacter isolates in a tertiary care hospital of rural Area of punjab, india journal of microbiology and antimicrobial agents. 2015; 1(1): 8-12.
- [15]. Sengupta S, Kumar P, Ciraj A M, et al. Acinetobacter baumannii- An emerging nosocomial pathogen in the burns unit Manipal, India. Burns 2001; 27:140-144.
- [16]. Bergogne-Berezin E, Towner KJ. Acinetobacter spp. as nosocomial pathogens: Microbiological, Clinical and Epidemiological Features. Clin Microbiol Rev 1996; 9: 148-163.
- [17]. Smolyakov R¹, Borer A, Riesenberg K, Schlaeffer F, Alkan M, Porath A, Rimar D, Almog Y, Gilad J. Nosocomial multi-drug resistant Acinetobacter baumannii bloodstream infection: risk factors and outcome with ampicillin-sulbactam treatment. J Hosp Infect. 2003 May;54(1):32-8.
- [18]. Towner KJ¹. Clinical importance and antibiotic resistance of Acinetobacter spp. Proceedings of a symposium held on 4-5 November 1996 at Eilat, Israel.J Med Microbiol. 1997 Sep;46(9):721-46.
- [19]. Kansal R, Pandey A, Asthana AK. β-lactamase producing Acinetobacter species in hospitalized patients. Ind J Pathol Microbiol 2009; 52: 456-457.
- [20]. Sinha M, Srinivasa H, Macaden R. Antibiotic resistance profile & extended spectrum beta-lactamase (ESBL) production in Acinetobacter species. Ind J Pathol Microbiol 2007; 126: 63-67.

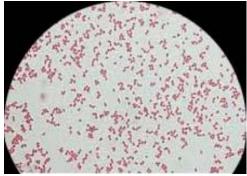


Fig 1 : Gram stain from growth

Fig 2 : Acinetobacter baumannii on MacConkey agar Fig 3 : Acinetobacter lwoffii on MacConkey agar

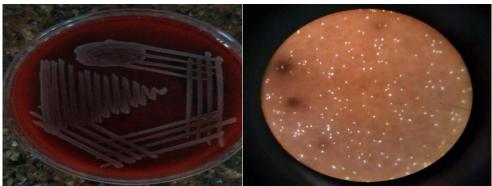


Fig 4 : Acinetobacter hemolyticus on Blood agar

Fig 6 : Utilization of 10% lactose A. baumannii (+Ve) & A. lwoffii(-Ve)

Fig 5 : Capsular staining showing Acinetobacter

Fig 7: Nitrate reduction test Escherichia Coli (+Ve) &A. baumannii (-Ve)

Fig 8: Antibiotic susceptibility testing